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The Cavity Biased Monte Carlo method for the (7, V, 1) ensemble has been tested
on a system of Lennard-Jones particles near the triple point in the liquid and fluid state, on
a system of dense soft spheres and on liqud water at room temperature. We demonstrate
that the original (T, V, i) algorithm of Adams is capable to provide accurate density at much
higher densities than it was originally thought possible.

1. Introduction and Background

The purpose of this work is to study the capabilities of the Cavity Biased Monte
Carlo method (in the following: CB/TVM) [1] for computing configurational averages of
dense liquids in the grand-canonical ensemble. Probably the most important advantage of
simulations in the grand-canonical ensemble is that they can yeald the excess chemical poten-
tial directly, making the calculation of the excess free energy possible. Since the computation
of the free energy by computer simulation poses particular difficulties, this fact itself may
make the additional effort of performing the simulation in the (7, V, ) ensemble worthwile.
Because of the importance of the free energy, special emphasis will be laid on this aspect of
the results.

The CB/TVM method is an extension of the method developed by Adams [2] and in-
dependently by Norman and Filinov [3] for Monte Carlo calculations in the grand-canonical
ensemble (in the following: TVM). This method is derived from the canonical ensemble
Metropolis algorithm [4] by supplementing the stochastic walk generated in the configura-
tion space by random insertions and deletions of a particle. Variations of this method were
given by Rowley, Nicholson and Parsonage [5] and by Yao, Greenkorn and Chao [6]. A tech-
nique to compute the excess chemical potential from canonical or microcanionical ensemble
was originally suggested by Widom [7] and used in simulation by Romano and Singer [§].
A variaton of this method, called ‘inverse Widom’ technique was proposed by Shing and
Gubbins [9]. Recently, Powles, Evans and Quirke have observed that the Widom method
gives good results even near the triple point of the LJ fluid when implemented in a molecular
dynamics simulation [10]. Shing and Gubbins [11] derived and tested an improved version of
this method using biased sampling. For the related problem of the computation of the excess
free energy, several techniques exist: the thermodynamic integration [12], the exponential
formula with umbrella sampling (also called the perturbation method) [13], Bennet’s method
[14,15] and the recently introduced overlap ratio method of Quirke and Jacucci [16]. Recent
reviews of the problem of free-energy calculation can be found in [17-21].



In § 1 the CB/TVM method will be reviewed. Computational details can be found
in Appendices 1-2. In § 3, CB/TVM and TVM calculations are presented for the Lennard-
Jones liquid (in the following: LJ) near the triple point in the liquid phase and in the fluid
phase. By comparing the results of the CB/TVM run with existing data on the LJ fluid, we
will established the quantities that the CB/TVM method is able to give reasonably accurate
result in this ‘difficult’ region of the phase space. By comparing the CB/TVM results with
the TVM results, we will be able to establish the quantities that we can expect to obtain
with reasonable precision at very low acceptance rates. In particular, we will be demonstrate
that the density can be calculated with sufficient accuracy that the excess chemical potential
can be determined from it. Section 4. gives the result on the soft sphere system that was
used as a reference to determine the excess free energy of the MCY water [22]. Section 5
presents results on the application of the CB/TVM method to water using the ST2 [23],
SPC [24] and MCY [25] potentials. Where possible the excess free energy is compared with
values recently calculated by thermodynamic integration [22]. Section 6 discusses the results
and comments on the relative efficiency of different techniques for free-energy calculation.

2. Theory

Computer simulation in the (7, V, 1) ensemble can be performed by a method that
is a direct generalization of the (7', V, N) Metropolis Monte Carlo method [2,3]. A Markov
chain of configurations is generated where successive members of the chain are generated from
the preceding ones by any of the following three operations: (a) Displacement of a particle;
(b) Insertion of a particle; (c¢) Deletion of a particle. The displacements are accepted using the
rules appropriate to the (7', V, N) ensemble. In the present study force-biased displacements
[26] were used for the LJ liquid and regular Metropolis displacements [4] for water. The
recently introduced CB/TVM method attempts the insertion at positions where a cavity of
suitable radius R or larger exists and this attempt is accepted with probability

P = min(L, VPN (@) expl(u + UY) = UEN 1) /RT)/(N +1)). (1)

Here 4 is the chemical potential, V/ = V/A3, where A is the de Broglie wavelegth, U (rN ) is
the potential energy of a system of N particles at the configuration rV and P(gN (rN ) is the
probability of finding a cavity of radius R or larger in the configuration rN. In Appendix
1 two methods are described that make the cavity search rather efficient for systems of
hundreds of particles. Finally, the particle to be deleted is chosen randomly and the deletion
attempt is accepted with probability

Pép = min(1, N exp|(—p+ U™) = U 1) /7] (V! PY V). (2)

The above expressions can be simplified for computational purposes [2] through the substi-
tution
¢ = kT B — kT In(N), (3)

where p’ is the excess chemical potential and the value of B is fixed at the beginning of the
calculation.

It is possibile that no cavity is found in a given configuration and in that case a
random insertion is performed. This affects the acceptance of the deletion step since it has
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to reflect the fact that not all insertions are made into cavities. As descriebed in [1], this
requires the estimate of the probability of these random insertions, Plll\(T)CElV‘ For the moderate
density used in [1],

PN

nocav

= (1= P (@)

provided an adequate estimate. However, since in general (1 — PN)Vt) £ (1 — (PN )M,
for the higher densities used in the present work it was found to be necessary to estimate
PN ... directly from the simulation. Fortunately, this required only a small extra effort.

There is a considerable freedom in the order of the various types of trial perturba-
tions. The present work, following Adams [2], performed displacement, insertion, displace-
ment, deletion attempts in cycles.

For particles that lack spherical symmetry (like water) the orientation of the particle
has to be chosen at insertion. In the present work we always chose a random orientation. It is
possible, that by considering the torques at the insertion site selected, an efficient orientation
selection, analogous to the gradient bias methods [26,28], can be developed.

2.1. Density limitations

It is well known that at high densities the frequency of successful insertion in (7', V, i)
simulations will become negligible since the attempted insertions will always cause an overlap
with existing molecules. This limitation motivated the development of the cavity-biased
algorithm and one of the goals of the present paper is to explore this limit.

Interestingly, at low densities a different kind of problem can arise. A state that lies
inside the coexistence curve is metastable. Therefore, simulations at this point for sufficiently
large systems and sufficiently long simulation length should separate into liquid and vapour
phase. However, for smalles systems the liquid state appears to be artificaially stabilized,
and this has been observed in a large number of simulations in the (7, V, N) and (E,V,N)
ensembles. Simulations in the (T, V, 1) ensemble, however, are less stable at lower densities
and the separation occurs rapidly even at small system sizes. An example of this phenomenon
will be presented in § 3.3.

2.2. The estimation of PN (rV)
The estimation of PCN (rN ) can be performed at several levels of approximation:

(1) PN (r™) can be approximated by a configuration independent PN, see [1]. This
is rather simple computationally and was found to be adequate for the supercritical LJ fluid
at moderate density. In the present work results will be presented near the triple point of the
fluid where it leads to a ~ 1% error in (N). Calculations using this method will be labelled
CB/TVM/M (the suffix M indicates the use of mean probabilities).

(2) PN(r™N) can be approximated by averageing the estimated probability of find-
ing a cavity only over configurations that resulted in a successfull insertion. The label

CB/TVM/AM method will refer to this technique. (the suffix AM indicates the use of mean
probabilities over accepted insertions and deletions).
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(3) The PN (rN) ‘exact’ procedure would estimate at each configuration r’V sepa-

rately. This, however is only workable if the estimate is precise enough, making it impractical
for the random cavity search involved with either CB/TVM/M or CB/TVM/AM. Its use
requires a different approach. Following Owicki and Scheraga [27], we implemented a cavity
search using a finite grid. Insertions are performed on a randomly selected ‘free’ grid. This
introduces a slight error into the limiting distribution of the Markov chain since the deletions
can occur at any point in the box but insertions are restricted to the gridpoints. The error
decreases as the grid is refined, It will be demonstrated that the eror is actually negligible
with manageable gridsizes. Details of the algorithm are given in Appendix 3. The method
using this grid algorithm will be labelled CB/TVM/GX.

2.3. Calculation of the free energy

The excess free energy per particle A’ can be obtained from the excess chemical
potential and pressure using the expression

A=y —pV/N + kT = kT|B — In(N) — pV/(NET) + 1] (5)

where p is the pressure of the liquid. It can be computed from the virial sum and a correction
term due to the finite cutoff applied to the potential [2,29,30]. The configurational free energy
per particle A. is obtained using equation (5) as

A=A+ kKT(Inp—1)=kTB —pV/(N) — kT InV. (6)

2.4. Ezxtrapolation to target density

(T, V, u) ensemble calculations provide only the excess chemical potential at a density
that is obtained at the end of the calculation as an ensemble average. To obtain results at a
preassigned density, it may be necessary to perform further (7', V, 1) simulations, and then
interpolate. However, results from one run should give a good estimate for the B value
necessary to obtain a required (N) since A(N)/Apu can be approximated by (O(N)/ou)r v
and [2]

(O(N) /o)1y = ((N?) = (N)?)/kT (7)
Using equation (3) we obtain
(D(N)/0B)ry = (D(N)/Op) ndp/dB = (N?) — (N)?. (8)

Similarly, one can estimate the internal energy and the pressure from a run that gives (N)
close to the requested value:

(OU/O(N)) 1y = (OU/OV )1 ndV/d(N) = (p — pkT)/p (9)

and
(Op/O(N)) 1,y = (9p/0V)p NdV/A(N) = kTp/((N?) — (N)?). (10)



Eq.(9) can be obtained in an analogous manner to the pressure equation [29] and Eq.(9) was
obtained using the expression for the isothermal compressibility x given by Adams [2]:

X = —(OV/ap)r.n [V = ((N?) = (N)?)/pkT (N). (11)

A more general approach can yield the expectation value of any property @) at a
chemical potential p which is different from the one used,u, through a weighted average over
the configurations sampled:

(Q)p = (Qexp[N (1 — po) /KT]) /{exp[N (1t — p10) /k]T) - (12)

Eq.(12) is only limited by the fact that for very different p and p, the precision of the
averages involved would be rather low.

3. Calculations and results on the Lennard-Jones fluid
3.1. Liquid state near the triple point

We selected the LJ fluid at 7" = 0.75, p=0.8 for testing the CB/TVB and TVM
methods at high density. (In describing the LJ results, the usual reduced units are used:
kT/e) = T, V/o3 =V, Ule = U, po3/e = p.) This point is near the triple point of the
liquid and is a severe test of the methods. The configurational free energy per particle Ac
was computed using thermodynamic integration by Hansen and Verlet [31] as -4.2740.04
and by Torrie and Valleau [13], using umbrella sampling, -4.265+0.02. For the pressure,
Hansen and Verlet reported -0.319£0.03 [31] and recently Mezei [32] -0.281. The system
was modeled with a simulation cell of volume V = 12503 with face-centered cubic periodic
boundary conditions (FCC PBC) for all but the CB/TVM/GX calculations. With N = 100
this corresponds to p = 0.8. The FCC PBC were chosen since about 30% less particles are
needed for a given inscribed sphere than for the usual simple cubic boundary conditions.
The algorithm and computer code to determine the nearest image of a particle using FCC
PBC is due to J.C. Owicki [33]. Appendix 2 provides an algorithm for efficient generation
of uniformly distributed random points in a FCC cell, required for the insertion step. For
reasons given in Appendix 3, the CB/TVM/GX calculations were performed in a simple
cubic cell (SC PBC) with V = 212.5¢3. Here N = 170 corresponds to p = 0.8. These
system sizes were chosen to obtain an inscribed sphere radius of ~ 30. The cavity radius
was chosen to be 0.8 o.

Substituting the previosly computed A and p values into equation (6) we obtain
B = —1.396 or B = —1.333 for N = 100 when the pressure values of [31] or [32] are used,
respectively. For N = 170, we obtain B = —0.864 and B = —0, 801, respectively.

A spherical cutoff of 2.5 ¢ was employed in all simulations ans the enrgy, pressure
and entropy for the LJ system were corrected to infinite system size, as described in [29].
Appendix 4 corrects [1] where incorrect long-range correction was used.

Three simulations were performed using B=-1.396, a run of 3 x 106 steps using
Adams’ TVM method, a run of 1 x 109 steps using the CB/TVM/M method and a run of 1 x
109 steps using CB/TVM/AM method. In the CB/TVM/M and CB/TVM/AM calculations
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200 test points were generated at each insertion step. The corresponding calculations using
the CB/TVM/GX method were performed using B = —0.865 with gridsizes 0.3 o, 0.15 o
and 0.15 0. The acceptance probability of the insertion/deletion step was 0.001 and 0.02
for the CB/TVM/AM and CG/TVM/AM methods, respectively. The (N) values obtained
were 99.840.6, 98.74+0.8 and 99.4+0.7 for the TVM, CB/TVM/AM and CB/TVM/AM
methods, respectively. (The error bounds were obtained by the method of batch means
[34].) The CB/TVM/GX method gave (N)=166.9+1.0, 169.1£0.4, 169.240.6, for gridsizes
0.3 0, 0.15 ¢ and 0.15 o, respecively. For gridsizes 0.15 ¢ and 0.10 ¢ the calculations were
repeated with slightly different setup parameters giving (N)=169.1+£0.5 and (N)=168.9+0.6,
respectively. The various thermodynamic parameters and run characteristics at successive
stages of the runs are collected in tables 1 and 2. The numbers in the tables printed in bold
face correspond to the results at the end of the run. The same quantities at intermediate
stages of the calculation are also given in these tables to show the convergence characteristics
of the various quanttites. Part of the data will be discussed in § 6.

Runs of similar length using B=-1.23 were also performed. For the insertion/deletion
step the acceptance probability was 0.001 and 0.020 for the TVM and CB/TVM /M methods,
respectively. The TVM and CB/TVM/M methods gave (N)=101.3£0.8 and 99.7+0.9 for
methods, respectively. The various thermodynamic parameters and run characteristics at
successive stages of the runs are collected in table 1.

For the CB/TVM/M method, the B and p values can be extrapolated for p=0.8 as
B=-1.18 and p=-0.260. Significantly, the use of equations (8) and (10) gave the same result.
Table 3 contains the B parameter and the pressure extrapolated to p=0.8 and the configu-
ratonal free energy computed. Based on the succesful use of the extrapolation formulae for
the CB/TVM/M calculations we employed equations (8) and (10) to obtain these results.
The error estimate for A is obtained using equation (8) from the error estimate computed
for (N). The error in A, should also have a contribution in p, but the two contributions are
likely to be correlated and simple additition of the error squares would lead to overestimate.

The most striking result is that while the acceptance rate of an insertion/deletion
step for the TVM method is about 20 times less than for the CB/TVM method, the density
is accurate within 1%, implying that even at such a low acceptance rate reasonable accuracy
can be obtained for the density. This result has been arrived at independently by N. Quirke
[35].

The differences between the calculated configurational free energies and the previ-
ously computed values are all within the stated error limits withthe CB/TVM/M result
giving the largest deviation. The pressure values generally fall between the two previously
published values, the exception again is the CB/TVM/M result.

3.2. Fluid state near the triple point

The free energy of the LJ fluid at T"= 0.903 and p = 0.835 was computed by Torrie
and Valleau [13] as A. = —3.966+0.02 and the pressure has been obtained by McDonald and
Singer [36] as 1.09. Using a system of 178 particles requires a simple cubic cell of 5.9737 o
edge, easily accomodating the 2.5 o cutoff for the potential. The previously computed free



energy and pressure values suggest B = 2.27. The initial configuration for the (T, V, 1) en-
semble simulation was first equilibrated in the (7', V, N) ensemble, giving U = —5.84 4+ 0.01
and p = 1.09 £ 0.07,in good agreement with the values given by McDonald and Singer.
(T, V, ) ensemble simulations were performed using the TVM, CB/TVM/M (R; = 0.7¢0
and R. = 0.80) and the CB/TVM/GX (R; = 0.80) method with a 0.10 ¢ grid. The ac-
ceptance probabilities for the insertion/deletion steps was 0.0004 for the TVM method and
0.004 and 0,014 for the CB/TVM/M method using R. = 0.70 and 0.8 0, respectively. The
results at successive stages of the runs are summarized in table 4. For the average num-
ber of particles we obtained (N)=178.0£1.5, 177.5+1.1, 178.3+£1.7 and 178.840.7 using the
TVM, CB/TVM/M, CB/TVM/M, CB/TVM/GX methds, respectively. Extrapolation to
p = 0.835 gave p¥ = 1.02, 1.00, 1.00 and 1.02 using the TVM, CB/TVM/M, CB/TVM/M,
CB/TVM/GX methods, respectively. Substituting into equation (6) yields the configura-
tional free energy as A. = —3.83, -3.77, -3.85 and -3.89 using the TVM, CB/TVM/M,
CB/TVM/M, CB/TVM/GX methods, respectively.

3.3. Liquid state at medium density and low temperature

The free energy of the LJ fluid at 7' = 0.75 and p = 0.6 was computed by Torrie
and Valleau [13] as A = —3.966 in good areement with Hansen and Verle who reported
Ac = 3.9 and p = —0.9234. Use of a 128 particle system requires a simple cubic cell
of 5.9752 o edge, easily accomodating the 2.5 ¢ cutoff on the potential. The previously
computed free energy and pressure values suggest B = —1.916. A short (7, V, N) ensemble
run started from a random configuration provided the initial configuration for the (7', V, )
ensemble simulation.

The simulation of this system, however, is unstable. Claculations using B < —115
finish iwth no particle in the box after only 3 x 10% configurations. Calculations with
B > —1.08, on the other hand, filled the box with over 200 particles, again within 106
configurations.

4. Calculations and results on soft spheres

The excess free energy of several water models were obtained previously by thermo-
dynamic integration [22] using the soft-sphere fluid at p(e/kT)1/4 = 0.74 as a reference state.
We performed (T, V, 1) ensemble calculations on this system. [36] gives the excess free energy
of this soft-sphere system as A" = 7.035 kT and pV/NET = 15.395 [37]. An attempt to use
the original TVM method met with complete failure: in 5x 106 configurations not a single in-
sertion attempt was accepted. Calculations with the CB/TVM/M method using B = 26.19
and B = 25.5 were performed using FCC PBC and targeting (V) = 64. The cavity radius
chosen was again 0.8 o (the volume was 61.16 ¢3). With B = 25.5 we also performed a calcu-
lation using a cavity radius of 0.75 o. The results of the CB/TVM/M runs are given in table
5. They gave (N) = 65.2+0.3 and 64.1+0.3, pV/NkT = 15.34+£0.3 and 15.39£0.2, respec-
tively. Extrapolation to (N) = 64 gives A’ = 6.91 £ 0.3kT and 6.9640.3 kT, respectively,
in good agreement with the value in [37]. The corresponding CB/TVM/GX calculations
targeted N = 91, using B = 26.54 corresponding to the B = 26.19 calculation, employing
0.11 ¢ and 0.07 o grids. The results of the CB/TVM/GX calculations are summarized in



table 6. They gave (N) = 92.5+ 0.5 and 92.5 + 0.5,respectively, and pV/NkT = 17.05+ 0.4
and 16.93+ 0.3, respectively, in good agreement with the CB/TVM/M run. The probability
of successful insertion/deletion was only 0.002-0.003 for all of the runs, comparable to the
TVM calculations on the LJ T" = 0.75, p = 0.8 system.

5. Calculations and results on liquid water

CB/TVM calculations were also performed on liquid water at the experimental den-
sity at 25°C where the excess free energy has been recently calculated by thermodynamic
integration for three different water models [22]. Preliminary calculations using different
potentials showed that using the original TVM method no accepted insertions or deletions
occurred during 5 x 10% long trial runs for the MCY [23], ST2 and SPC [24] models and only
30 accepted insertions for the ST2 [25] water. However, most insertions were quickly deleted
again, resulting in the sampling of the narrow N range 95-97. The CB/TVM method was
able to produce ~0.001 acceptance probability at liquid water density for the ST2 and SPC
potentials (comparable to the soft sphere calculations) but again there were no accepted
insertion or deletions for the MCY potential, The excess free energies of these water models
were obtained as -16.57 kJ /mol, -22.59 kJ.mol and -18.45 kJ /mol for the MCY, ST2, and SPC
waters, respectively (using FCC PBC with 64 molecules where the inscribed sphere radius
is 6.9653 A). Separate (T,V, N) ensemble calculations for this system size gave the pressure
as p = 545 atm and p = —301 atm, respectively, suggesting B = —5.64 and B = —4.04 for
the ST2 and SPC waters, respectively.

For the CB/TVM/GX calculations, performed on the ST2 and SPC waters, the
corresponding SC PBC requires 91 molecules in a box of side 13.9623 A. The B values
reproducing the earlier calculated excess free energy and pressure values are B = —5.29
and B=—3.72 for the ST2 and SPC waters, respectively. For the SPC water, calculations
were performed using g = 0.240 (= 2.3 A), g = 0.120 and g = 0.080. Using g = 0.24¢
and B = —5.1 kept (N) well under 91 and using B = —4.8 kept (N) above 93.0. The
g = 0.12 0 calculations used B = —4.8, B = —4.5 and B = —4.3, giving (N) = 89.2 4+ 1.3,
(N) =91.2+ 1.1 and (N) = 93.8 + 0.8, respectively. The calculations with the finest grid
g = 0.080 used B = —4.7 and B = —4.5, giving (N) = 89.4 £ 1.5 and (N) = 91.6 £ 1.1,
respectively. Succesive cumulative averages of (INV) are given in table 7 for the different
runs. The cumulative averages clearly show that the (V) vakues undergo large fluctuations.
Succesive 5 x 10° averages may actually differ by as much as 4 particles. The B value
corresponding to the experimental density is estimated as B = —4.6 giving -20.63 kJ/mol
for the excess free energy of the SPC water.

For the ST2 water CB/TVM/GX calculations were performed using a 0.12 o grid
since the SPC results showed no statistically significant difference in the computed (V)
when finer grid was used. The cavity radius was chosen as R, = 2.6 A. Using B = —4.6
and B = —4.2 the density turned out to be significantly lower than the experimental value.
Calculations with B = —3.8 and B = —3.5 gave (N) = 90.9 + 1.3 and (N) = 91.4 + 1.2,
respectively. The succesive cumulative averages for (N) are displayed in table 7. The B
value corresponding to the experimental density is estimated as B = —3.6 giving the excess
free energy of the ST2 water -19.37 kJ /mol for .



6. Discussion

It has been shown that the CB/TVM method is capable of simulating the LJ fluid
near the triple point. This is a significant improvement over previous grand-canonical ensem-
ble calculations where the highest density used was p=0.64 [2], p=0.68 [38] and p=0.6325 [6].
Similarly, accurate results have been obtained for the excess free energy of the soft-sphere
system at high density (or, equivalently, at low temperature). It has also been demonstrated
that the TVM method, in spite of the very low acceptance rate of insertions and deletions, is
still capable to produce reasonably accurate results for the LJ systems studied but failed for
the dense soft spheres and for liquid water. It has also been demonstrated that simulations
in the (7,V, ) ensemble produce phase separations more easily than in the (7,V,N) or
(E,V,N) ensembles.

For the dense atomic fluids, the precision of the calculated (N) values with runs of
1 x 10 -2 x 100 steps is about 0.5 — 1 per cent. This gives an estimated error of the order
of 0.1 KT in the free energy. This is somewhat larger than the ~0.03 — 0.05 kT quoted in
the literature for the LJ fluid when thermodynamic integration or the perturbation method
with umbrella sampling is used. The calculated statistical uncertainties for (V) in the liquid
water simulations are 1-2 per cent. Here the convergence characteristics are markedly worse
than for the model liquids, making the free energy results less reliable. The likely reason
for this is the heavy dependence of the deletion probability on the high energy wing of the
binding energy distribution: Monte Carlo runs on water show long range energy correlations
[26, 39] and the effects are most pronounced at the extremes of the energy distributions.

The ranges of N sampled (shown in the tables as dN') show no significant difference
between different segments of a run and were essentially the same for TVM as for CB/TVM
for the LJ systems simulated, consistently well over 10 per cent. For the SS system studied,
however, dN was generally below 10 per cent and showed larger fluctuations over the various
segments of the run. This confirms the earlier finding that this SS system is more difficult
to simulate in the (7', V, u) ensemble than the LJ systems tried.

The excess entropy s’ and excess constant volume heat capacity ¢}, were computed
using expressions given by Adams [2]. The heat capacity shows consistently good conver-
gence behaviour, which is better than the convergence for the entropy. This is surprising,
since earlier work on liquid water (albeit in the (7, V, N) ensemble) found its convergence
rather poor [26, 39]. The program also computed the fluctuation-dependent thermodynamic
properties: the expansivity («), isothermal compressibility (3) and the pressure coefficient
() using the expressions given by Adams [2] that are related to each other by the simple
relation fv/a = 1. For the LJ fluid, the accurate equation of state of Nicolas et al. [40]
was used to estimate o, # and . The values computed from the simulation and estimates
from the equation of state are also shown in tables 1, 2 and 4. While the 8v/a = 1 relation
is usually strongly violated, the computed a and  values are generally close to the values
from the equation of state. Furthermore, they vary monotonously with the density, except
for the CBV/TVM/AM calculation. This gives some grounds for considering them to be
reasonably accurate. On the other hand, the calculated v values show no such trend and the
value calculated at various stages of a given simulation often varies by factors of two. This
is not surprising, since vy is the only fluctuation property that depends on cross-fluctuation.



For the soft sphere fluid, the equation of state given by Hoover et al. [37] was used to esti-
mate «,  and . Here the accuracy of all three of them is markedly worse than for the LJ
systems studied. Again, v is the least reliable. As an additional assessment on the precision
of the results an alternative expression for the density, expressed in terms of fluctuations
(equation (9) of [2]), has also been evaluated and shown in the tables. The conclusions are
in agreement with the conclusions from the §v/a check.

Comparison of the different approximations for PN (r") shows that (1) the CB/TVM/M
method gives ~1 per cent error in the density; (2) the density obtained by the CB/TVM/AM
method appears to be essentially correct but the fluctuation properties are less accurate. The
calculations with the CB/TVM/GX method give progressively better results as the cavity-
search grid is refined. In particular, the 0.15 ¢ and 0.10 ¢ grids both gave essentially the
correct density.

The B and p values that were extrapolated to p = 0.8 for the LJ fluid were obtained
using the extrapolation formulae equations (8, 10). The same results are obtained if linear
extrapolation is used based on the two CB/TVM/M runs using different Bs. Thus the
extrapolation formulae can be used for changes involving ~0.5 per cent in the density.

The failure of the CB/TVM method to produce any density fluctuation with the
MCY potential is most likely a consequence of the high pressure of this water model (6000 atm
[30]) at the experimental density. For the ST2 and SPC waters, the CB/TVM/GX method
produced stable densities with about 5 per cent fluctuation. The computed (N?) — (N)2,
also shown in table 7, range from 1.7 to 10.4, with the smaller values belonging to the shorter
runs. Due to the relatively large error bounds equation (8) is of little use for consistency
checks. The computed excess free energies, however, differed from the earlier values from
thermodynamic integration by 2.2 kJ/mol and 4.2 kJ/mol, for the SPC and ST2 waters,
respectively. Errors of this magnitude cannot be attributed to statistical uncertainties. To
make matters worse, the deviations are in the opposite direction, giving a 6.4 kJ/mol dis-
crepancy with the excess free energy difference between the two models previously computed
directly by thermodynamic integration [21]. The source of this discrepancy is the subject
of further investigations. It probably lies in the difference in the two sta- tistical ensembles
since the system sizes applied are rather small.

The computer time requirements on the LJ system of the various techniques can be
summarized as follows. Taking the regular canonical ensemble simulation time as one unit,
the original TVM technique takes 1-5 units, the CB/TVM/M or CB/TVM/ AM methods
with Ny = 200 take 4.1 units and the CB/TVM/GX technique takes 2.0 and 3.2 units for
using 403 (g = 0.150) and 603 (g = 0.10) gridpoints, respectively. However, the memory
requirement of the CB/TVM/GX method is 1.5 and 2.7 times the other methods using 403
and 603 gridpoints, respectively. The overhead involved in the various CB/TVM techniques
are about 50 per cent less for the water calculations since this overhead is independent of the
potential used. The comparison of the TVM and CB/TVM methods again demonstrated
that the CB/TVM method produces sim10 times greater acceptance probabilities for the
insertion/deletion step than the TVM method. However, for the LJ systems this difference
did not significantly affect the accuracy of the computed configurational averages. On the
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other hand, for the simulation of the dense soft spheres and liquid water the TVM method
was shown to fail while the CB/TVM method produced stable results.

Finally, two novel applications of the (7', V, 1) ensemble simulations are suggested:

(1) The initial configuration for simulation in any ensemble can be generated from
scratch very efficiently in the (7', V, u) ensemble. In our experience, the filling of an empty
simulation box and obtaining a reasonably equilibrated configuration is 2-3 times faster in
the (T,V, ) ensemble than the equilibration of a completely random configuration in the
(T, V,N) ensemble.

2) The removal and subsequent insertion of a particle can be considered as a very large
step in a canonical ensemble simulation. This can be of significance when the system consists
of disjoint or narrowly connected areas where exchange of particles would be nonexistent or
extremely rare. Such situation can arise in the simulation of crystal hydrates.

This research was supported by NIH Grant 5-R01-GM-24914 and a CUNY Faculty
Research Award. Professor David L. Beveridge is thanked for several useful discussions
during the course of this project.

Appendix 1
Computational details of the cavity search used in the CB/TVM/M
and CB/TVM/AM calculations

For larger systems, consisting of several hundred particles, some form of neighbour
list appears essential for efficient cavity search [38]. For the relatively small systems that we
worked with, we found that direct comparisons with all particles are affordable. There are
two simple tricks, however, that were essential in achieving the current speed.

First, the need to find nearest images, any time the distance of a particle from a test
point is computed, is eliminated by generating the test points in a reduced cell whose walls
are R, away from the simulation cell’s walls. In order to sample all areas of the cell during
the simulation, for every insertion attempt the center of the simulation cell is first translated
to a randomly selected point in the simulation cell.

Second, as the distance square between the test point and the particles is computed,
an immediate check is made to see if the partial sum exceeds R? or not. While in some
instances the algorithm performs several tests instead of just one, the gain of early quitting
of the loop far outweighs this disadvantage. In fact, implementation of this second trick
made the program run nearly twice as fast for the 100 LJ particles with 200 random points
generated for each insertion. For larger systems (or higher dimensions) this gain is even
larger.

Appendix 2
Generating uniformly distributed points in an FCC cell

The CB/TVM/M and CB/TVM/AM algorithms requires the generation of a large
number of points unifurmly distributed in the simulation cell. Calculation described here
used the FCC lattice because the image to image distance is the largest with a fixed number

11



of particles. A simple procedure would generate random points in a cube containing the
simulation cell and then examine if the point is also in the simulation cell itself. This
results in a large number of boundary condition examination. To avoid this extra work, we
developed here a simple procedure that generates the points directly.

The view of the unit cell from the x — y bisector is shown in Figure A1l. Here the
plane of the rhombus ABCD is parallel to the plane of the hexagon EFGHIJ. The distance
between the two planes is 1/ V2.

The algorithm first selects a plane parallel to these two and lying between them.
In general, this carves out a hexagon form the cell labeled in the figure by KLMNOP. The
probability of selecting a plane should be proportional to the area of the hexagon carved
out, 2r + 2/4/r, where r is the distance of the selected plane from the plane of the rhombus
ABCD.

Next, a random point is selected in the hexagon KLMNOP. Figure A2 shows this
hexagon with its dimensions as a function of r. A random point will be selected if one first
selects a random point in the rectangle KMQR. If the point falls below the ON line, it is
translated by (—1/v/2,1/2 + rv/2 into the triangle KLS and if the point falls below the OP
line, it is translated by (—1/v/2,1/2 4 rv/2 into the triangle LMS.

Finally, with probability 0.5 the point is replaced with its mirror image with respect
of the plane of the hexagon EFGHIJ. Also, the coordinates just obtained have to be scaled
with the actual size of the cell and rotated by 45% around the z axis. Implementation of this
algorithm gave a 20% improvement in the overall computer time over the trivial algorithm
for the LJ system using 100 particles and generating 200 random points per insertion.

Appendix 3
The cavity search using the grid algorithm

The algorithm was developed assuming simple cubic periodic boundary conditions.
At the outset, an array Neoy([, J, K) is initialized to count the number of particles that
are closer than R. to the grid point (EO + I x ENg, B0 + J * ENg, E0 + K * ENg), where
E is the edge of the simulation cube, E0 = —FE/2 — E/(2 x Ng) and Ng is the number
of gridpoints along each axis. At each step, PCN (RN ) is approximated by Ncay /NgN . The
gridsize discussed earlier is £//Ng. Grid points that are not covered are considered cavities.
A second array Lcay contains a list of the cavities, in the form of I * 210 1 74925+ K. The
length of the list Lcay, Neay varies during the simulation. Finally, the location of the cavity
(I,J,K) is stored in the array Ncoy (with negative sign to distinguish it from the cover
counter values).

When a particle is removed:
(1) For all gridpoints covered by this particle, decrement Neoy (I, J, K).

(2) If the decremented Neoy (I, J, K) became zero, add (I, J, K) to the cavity list
Lecav and incerment Neay.
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When a particle is added:

(1) For each gridpoint covered by this particle that was already covered, increment
Neov(I, J, K).

(2) For each cavity covered by this particle, set Neoy(Z, J, K) to one and remove
(I,J, K) from the cavity list. This consists of the following steps:

2.1. Transfer the information stored in the Ngay-th element of the list to the place
of the cavity to be removed (obtained from the Neoy(Z, J, K) corresponding to the cavity);

2.2. Update the information in Neoy(Z, J, K) corresponding to the cavity transferred;
2.3. Decrement Ncay.

A simple displacement can be represented by a removal and an addition although
for finer grids it is a rather wasteful procedure.

The main advantage of this algorithm is that the addition or removal of a particle
only affects the gridpoints covered by the particle and thus the computer time is independent
of the system size. The main problem is that the storeage requirement increases strongly as
the grid is refined.

The restriction of the algorithm to simple cubic cells was necessary to be able to
find the cavities covered by a particle without examining the boundary conditins for each
gridpoint under study.

Appendix 4
A correction to [1]

All calculations reported in [1] used a correction term to the energy that was double
the correct value. As a result, for the system where comparison was made with results of
Adams [2] (T = 2.0, p = 0.6408, (N) = 160.2), a small but noticeable discrepancy was found
in the calculated (V) that was erroneously attributed to possible problems with the random
number generator used in [2]. Repeating the calculation (1 x 106 steps) for this system with
the correct correction term, we obtained (N) = 160.0 to be compared with 160.2, obtained
by Adams. Similar agreements were found for all the properties given in [2].

Note added in proof. — Ruff, Baranyai, Palinkas and Heizinger published a new
version of the CB/TVM/M method where the cavity search is based in the vertices of the
Dirichlet-Voronoi polyhedra of the particles and the cavity correction in the acceptance
probability is replaced by an energy criterion [41].
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Table 1. Thermodynamic parameters and run characteristics for the Lennard-Jones system
at T' = 0.75 targeting p = 0.8, N = 100

B (Ny U —-p -5 ¢ o 3 v By/a p dN  NMC

TVM
-1.396 99.6 5.76 .317 3.21 252 091 .15 2.7 046 099 15 1000
99.8 577 302 3.20 252 0.68 .11 5.3 091 081 15 2000
99.6 5.77 .314 3.21 2.51 0.62 .11 6.3 1.08 0.74 17 3000
Eq.state 0.275 0.70 0.13 5.1
CB/TVM/M
-1.396 98.6 5.66 .433 3.38 248 0.78 .14 55 0.96 0.77 16 250
98.9 5.72 408 3.33 244 0.68 .12 6.3 1.09 0.70 18 500
99.0 5.74 375 329 245 0.70 .12 6.1 1.05 0.73 22 750
98.7 5.73 .380 3.29 2.46 0.72 .13 6.0 1.04 0.73 26 1000
Eq.state 0.339 0.74 0.15 5.5
CB/TVM/AM
-1.396 99.7 5.75 296 3.17 256 091 .15 4.5 0.68 0.91 28 200
98.7 570 .353 3.21 248 087 .15 3.2 0.55 093 29 500
99.5 574 307 3.17 247 091 .15 2.2 0.37 1.01 26 700
99.4 5.74 .314 3.18 2.44 0.88 .15 3.0 0.51 0.94 28 1000
Eq.state 0.290 0.71 0.15 6.6
TVM
-1.23 101.3 5.84 164 3.21 253 1.19 20 -6.3 -1.04 1.68 20 1000
101.5 586 .167 3.23 257 094 .15 -09 -0.16 1.30 21 2000
101.3 5.85 .194 3.27 2.56 0.82 .13 1.8 0.30 1.09 21 3000
Eq.state 0.139 0.63 0.14 5.5
CB/TVM/M
-1.23 99.9 577 272 330 251 0.51 .09 5.8 1.05 0.77 16 250
99.5 577 304 337 247 0.63 .11 54 096 078 17 500
99.7 579 302 3.39 247 064 .11 54 094 0.78 18 750
99.8 5.77 .288 3.34 2.46 0.65 .11 5.8 0.99 0.76 18 1000
Eq.state 0.260 0.69 0.13 5.2

B, the parameter in equation (3); U, p, computed internal energy end external pressure,
corrected to infinite potential cutoff; s', ¢/, computed excess entropy and constant volume
heat capacity, uncorrected for the potential cutoff; «a, 3, v, expansivity, isothermal compress-
ibility and the pressure coefficient, uncorrected for the potential cutoff; p’, density computed
from fluctuations [2]; dN, range of N values sampled in the segment of run starting from
the point the previous line in the table refers to; NMC, number of compund Monte Carlo
steps/1000; the data in lines of Eq. state was obtained from the equation given in [40].
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Table 2. Thermodynamic parameters and run characteristics for the Lennard-Jones system
at T'= 0.75 targeting p = 0.8, N = 170

B (Ny —-U —-p —§ a g Y By/a pf dN  NMC

CB/TVM/GX, g = 0.30
-0.865 166.7 5.68 0.486 3.43 245 0.72 0.13 42 077 084 18 200
167.0 5.70 0491 3.45 244 102 0.19 -09 -017 .1.22 31 500
167.7 5.69 0493 3.44 244 096 0.18 -04 -0.07 .1.19 23 700
166.9 5.69 0.483 3.43 2.42 0.84 0.16 1.6 0.31 1.03 22 1000
Eq. state 0.375 0.76 0.15 4.9
CB/TVM/GX, g = 0.150 (1st)
-0.865 169.2 5.75 0.358 3.28 245 047 0.08 8.2 1.42  0.57 18 200
169.8 5.74 0.394 3.33 243 0.62 0.11 53 093 077 26 500
169.9 5.7 0.377 3.31 244 0.62 0.12 38 0.69 0.90 22 700
169.1 5.76 0.361 3.28 249 0.62 0.11 44 079 0.87 22 1000
169.1 5.75 0.362 3.27 2.48 0.62 0.11 4.2 0.76 0.88 23 1250
Eq. state 0.284 0.70 0.14 5.2
CB/TVM/GX, g = 0.150 (2nd)
-0.865168.9 5.75 0393 3.34 245 049 0.09 6.7 121 0.67 18 250
168.8 5.74 0.394 3.33 243 0.62 0.11 53 093 077 26 500
169.1 5.77 0.363 3.30 247 0.63 0.11 3.6 0.66 0.92 22 750
169.1 5.76 0.361 3.28 249 0.62 0.11 44 079 087 21 1000
169.1 5.75 0.362 3.27 248 0.62 0.11 42 0.76 088 23 1250
169.1 5.75 0.353 3.27 3.47 0.61 0.11 4.1 0.75 0.89 20 1500
Eq. state 0.284 0.70 0.14 5.2
CB/TVM/GX, g =0.10 (1st)
-0.865 168.6 5.75 0.438 3.41 245 0.64 0.11 9.1 1.53 051 23 200
169.6 5.77 0.326 3.24 244 065 0.11 43 0.76 086 25 500
169.5 5.75 0.334 3.22 245 0.70 0.12 52 0.86 080 24 1000
169.2 5.76 0.347 3.26 2.45 0.68 0.12 5.2 0.90 0.80 20 1250
Eq. state 0.281 0.70 0.14 5.2
CB/TVM/GX, g =0.10 (2nd)
-0.865170.2 5.79 0.287 3.20 243 0.63 0.11 6.7 1.12  0.68 20 200
168.9 5.75 0379 3.31 242 071 0.13 22 039 1.00 22 500
168.9 5.75 0.389 3.33 245 0.75 0.13 23 042 LOt 22 800
168.6 5.74 0402 3.36 244 0.73 0.13 24 043 1.01 22 1000
168.8 5.75 0.395 3.34 245 0.73 0.13 23 042 1.01 22 1200
168.9 5.75 0.387 3.32 2.46 0.74 0.13 2.2 0.40 1.02 25 1500
Eq. state 0.291 0.71 0.14 5.2

B, the parameter in equation (3); U, p, computed internal energy end external pressure,
corrected to infinite potential cutoff; s, ¢}, computed excess entropy and constant volume
heat capacity, uncorrected for the potential cutoff; a, 3, v, expansivity, isothermal compress-
ibility and the pressure coefficient, uncorrected for the potential cutoff; p’, density computed
from fluctuations [2]; dN, range of N values sampled in the segment of run starting from
the point the previous line in the table refers to; NMC, number of compund Monte Carlo

steps/1000; the data in lines of Eq. state was obtained from the equation given in [40].
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Table 3. LJ simulation results at T' = 0.75 extrapolated to p = 0.80

g B Ny (p »p B*  p* Ac
TVM 1.396 99.6  0.7968 -0.314 -1.37 -0.296 -4.28
CB/TVM/M 1.396 98.7  0.7896 -0.330 -1.18 -0.260 -4.18
CB/TVM/AM -1.396 99.4  0.7952 -0.314 -1.33 -0.354 -4.23
CB/TVM/GX(1st)  0.15 -0.865 169.1 0.7958 -0.362 -0.785 -0.314 -4.22
CB/TVM/GX (2nd) 0.15 -0.865 169.1 0.7959 -0.353 -0.784 -0.305 -4.23
CB/TVM/GX (I1st) 0.10 -0.865 169.2 0.7962 -0.347 -0.799 -0.308 -4.23
CB/TVM/GX (2nd) 0.10  -0.865 168.9 0.7950 -0.387 -0.781 -0.337 -4.21

The superscript = indicates extrapolation to p = 0.80.
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Table 4. Thermodynamic parameters and run characteristics for the Lennard-Jones system
at T' = 0.903 targeting p = 0.835, N =178

B (Ny -U —-p —§ ¢ o g Y By/a pf dN  NMC

TVM
247 1780 5.86 1.000 3.45 257 027 0046 82 136 063 12 1000
178.3 5.86 1.043 340 253 042 0071 3.7 141 1.02 17 2000
178.0 5.85 1.020 3.42 2.52 0.43 0.071 3.6 0.61 1.03 15 3000
Eq. state 1.060 0.39 0.069 5.7
CB/TVM/GX, R, = 0.8, g = 0.1
247 179.0 5.88 1.137 3.30 2.39 045 0074 24 039 1.09 21 200
179.4 587 1132 3.30 245 052 0.087 -0.0 -0.00 1.35 24 500
178.6 586 1.100 3.33 253 056 0.092 02 004 1.35 18 700
178.7 5.85 1.070 3.36 2.51 0.49 0.081 2.1 0.34 1.18 14 1000
Eq. state 1.118 0.38 0.067 5.7
CB/TVM/M, R, =0.7c
247 176.1 5.80 0.868 3.56 2.55 026 0049 7.1 1.33 069 13 200
177.0 583 0913 3.54 257 037 0.064 53 092 088 17 500
177.5 585 0961 3.50 2.58 041 0.067 56 092 0.86 16 700
177.5 5.84 0.967 3.49 2.55 0.46 0.077 3.5 0.59 1.04 19 1000
Eq. state 1.019 0.39  0.070 5.7
CB/TVM/M, R, = 0.8¢
247 1779 586 0.962 350 238 049 0082 24 041 107 22 200
178.1 5.87 1.037 341 236 039 0065 45 074 088 19 500
1784 5.85 1.040 3.40 245 039 0062 58 093 080 16 700
178.3 5.86 1.035 3.41 2.45 0.36 0.058 6.4 1.03 0.74 18 1000
Eq. state 1.084 0.39  0.068 5.7

B, the parameter in equation (3); U, p, computed internal energy end external pressure,
corrected to infinite potential cutoff; s', ¢/, computed excess entropy and constant volume
heat capacity, uncorrected for the potential cutoff; o, 3, v, expansivity, isothermal compress-
ibility and the pressure coefficient, uncorrected for the potential cutoff; p’, density computed
from fluctuations [2]; dN, range of N values sampled in the segment of run starting from
the point the previous line in the table refers to; NMC, number of compund Monte Carlo

steps/1000; the data in lines of Eq. state was obtained from the equation given in [40].
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Table 5. Thermodynamic parameters and run characteristics for the soft sphere system
targeting p(e/kT)/4 = 0.74 and N = 64

B (N) U pV/nkEs | ! 0 v By/a o dN  NMC
CB/TVM/M, R, = 0.8¢
26.19 63.92 3.58 16.00 4.14 3.14 0.10 0.014 4.5 0.64 0.77 17 250
65.37 3.79 1728 3.05 3.04 0.31 0.044 29.3 4.11 2.70 5 500
65.19 3.76 17.09 3.22 3.02 0.23 0.035 226 339 218 6 750
65.23 3.76 17.11 3.20 2.95 0.20 0.030 18.3 2.78 1.88 5 1000
Eq. state 15.07 0.13 0.019 6.7
CB/TVM/M, R, = 0.8¢
255 64.09 3.60 1540 3.36 3.07 0.12 0.018 .6 1.18 1.04 10 225
64.09 3.57 15.34 3.45 297 0.12 0.018 7.0 1.04 1.03 8 500
Eq. state 14.46 0.13 0.020 6.4
CB/TVM/M, R, = 0.725¢
25.5 64.05 3.59 1537 340 296 0.16 0.021 7.2 091 1.05 13 300
64.06 3.59 15.39 3.38 2.90 0.15 0.020 7.1 0.96 1.06 7 500
Eq. state 14.15 0.13 0.020 6.4

B, the parameter in equation (3); U, p, computed internal energy end external pressure,
corrected to infinite potential cutoff; s', ¢/, computed excess entropy and constant volume
heat capacity, uncorrected for the potential cutoff; o, 3, v, expansivity, isothermal compress-
ibility and the pressure coefficient, uncorrected for the potential cutoff; p’, density computed
from fluctuations [2] (N = 64 corresponds to p = 1.05); dN, range of N values sampled in
the segment of run starting from the point the previous line in the table refers to; NMC,
number of compund Monte Carlo steps/1000; the data in lines of Eq. state was obtained
from the equation given in [40].
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Table 6. Thermodynamic parameters and run characteristics for the soft sphere system
targeting p(e/kT)/* = 0.74 and N = 91

B (Ny U pV/nkT -5 ¢, a ¢ 0 By/a o dN  NMC
CB/TVM/GX, g=0.110
26.04 922 372 16.82 344 246 0.09 0.013 1.7 026 080 7 300
92,5 3.76 17.05 3.22 2.80 0.08 0.012 2.3 0.35 0.75 6 600
Eq. state 14.97 0.13 0.019 6.6
CB/TVM/GX, g = 0.070
26.54 928 3.76 17.12 321 273 0.11 0.017 6.9 1.07 1.11 8 300
925 3.75 1701 327 278 0.17 0.025 128 186 1.54 8 600
92,5 3.73 17.93 3.36 2.81 0.14 0.020 81 1.16 1.18 7 1000
Eq. state 14.97 0.13 0.019 6.6

B, the parameter in equation (3); U, p, computed internal energy end external pressure,

/

corrected to infinite potential cutoff; s’, ¢/, computed excess entropy and constant volume
heat capacity, uncorrected for the potential cutoff; a, 3, v, expansivity, isothermal compress-
ibility and the pressure coefficient, uncorrected for the potential cutoff; p’, density computed
from fluctuations [2] (N = 64 corresponds to p = 1.05); dN, range of N values sampled in
the segment of run starting from the point the previous line in the table refers to; NMC,
number of compund Monte Carlo steps/1000; the data in lines of Eq. state was obtained
from the equation given in [40].
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Table 7. Cumulative averages of the number of molecules during the water simulations

Model: SPC SPC SPC SPC SPC ST2 ST2
B: 4.8 4.5 4.3 4.7 4.5 -3.8 3.5
g: 0120  0.120 0.120 08¢ 0.8 o 0120  0.120
5% 10° 90.4 88.4 94.4 93.1 92.5 88.8 93.4
10x10° 89.2 90.4 93.4 91.5 92.6 89.7 92.4
15x10° 91.3 91.1 89.8 90.9
20x10° 91.4 91.2 90.6 91.3
25x10° 91.2 91.6 90.2 91.4
30x10° 90.9 91.4
(N2) — (N)?: 1.7 6.0 4.3 5.9 8.5 10.4 8.6

B, the parameter in equation (3); g, gridsize for the insertion algorithm.
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The correction to the calculated excess free energy of the SPC water|[1,2] prompted a search
for the source of the large error in the calculated excess free energy of the SPC and ST2 water
models in this paper. The algorithm generating the random orientation matrix at insertion
was found to be incorrect. It was replaced by an orientation matrix generator using the
Euler angles ¢, # and 1 [3]: ¢ and ¢ were generated randomly on the [0, 27] interval and cos
0 randomly in the [-1,1] interval [4].

The table describes the results of new simulations, at a density of 0.997 g cm™> with 91 water
molecules and with 0.08 A grid interval. The pressure of the SPC model was also calculated
in the grand-canonical ensemble. Interpolation between the two runs for each water model
gave B = —5.83 £0.2 and B = —4.83 & 0.2 for the SPC and ST2 waters, respectively. The
SPC pressure is interpolated as -150 atm. This gives the excess free energy as —22.9+0.4 KJ
mol ™! and —21.7+0.4 KJ mol~! for the SPC and ST2 waters, respectively. The SPC results
differ from the canonical ensemble results [2] by 0.7-0.9 K.J mol~! and from those of Hermans
et al. (run by a shorter cutoff) by 0.5 KJ mol~!. The deviation from the ST2 canonical
ensenible excess free energy (-22.9 using the MCY value of [2] or -22.6 from [1]) is 0.9-1.2 KJ
mol™ .
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Results of the grand-canonical ensemble simulations

SPC ST2
B -6.0 5.7 -5.0 -4.8
(N)(1000K) 89.55 92.97 90.14 91.68
(N)(2000K) 89.59 91.21 88.03 91.60
(N)(3000K) 90.31 91.84 89.48 91.59
(N)(4000K) 90.62 91.88 89.39 91.77
(N)(5000K) 90.57 91.68 89.22 92.01
(N)(6000K) 90.30+0.9 91.55+0.9 89.4941.6 92.0641.5
(N?)-(N)? 6.1 4.6 11.3 10
P: -170 -134

B is the chemical potential parameter. (N) is the average number of waters at various
stages of the calculation (1000K corresponds to 1 million Monte Carlo step consisting of a
displacement and an insertion or deletion attempt). The error estimates on (NN) represent
two standard deviations. P is the pressure in atm.
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